Distributed adaptive node-specific signal estimation in heterogeneous and mixed-topology wireless sensor networks
نویسندگان
چکیده
A wireless sensor network (WSN) is considered where each node estimates a number of node-specific desired signals by means of the distributed adaptive node-specific signal estimation (DANSE) algorithm. It is assumed that the topology of the WSN is constructed based on one of the two approaches, either a top-down approach where the WSN is composed of heterogeneous nodes, or a bottom-up approach where the nodes are not necessarily heterogeneous. In the top-down approach, nodes with the largest energy budgets are designated as cluster heads and the remaining nodes form clusters around these nodes. In the bottom–up approach, an ad hoc WSN is partitioned into a set of smaller substructures consisting of non-overlapping cliques that are arranged in a tree topology. These two approaches are shown to be conceptually equivalent, in that the same building blocks constitute both envisaged topologies, and the functionality of the DANSE algorithm is extended to such topologies. In using the DANSE algorithm in such topologies, the WSN converges to the same solution as if all nodes had access to all of the sensor signal observations, and provides faster convergence when compared to DANSE in a single tree topology with only a slight increase in per-node energy usage. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملTopology Control in Wireless Sensor Network using Fuzzy Logic
Network sensors consist of sensor nodes in which every node covers a limited area. The most common use ofthese networks is in unreachable fields.Sink is a node that collects data from other nodes.One of the main challenges in these networks is the limitation of nodes battery (power supply). Therefore, the use oftopology control is required to decrease power consumption and increase network acce...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 117 شماره
صفحات -
تاریخ انتشار 2015